A-LEVEL Statistics

Statistics 1B - SS1B
Mark scheme

June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]
Key to mark scheme abbreviations

M	mark is for method
m ordM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or marks and is for method and accuracy
E	mark is for explanation
Vorft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
$\begin{gathered} 1 \\ \text { (a) } \end{gathered}$	No MR or MC in this question			
	Ordered data:	M1 A1 A1 A1	4	May be near printed values If seen, then ≥ 5 correctly ordered If not seen, then can be implied from ≥ 1 of M, UQ, LQ or IQR correct CAO Either CAO; ignore notation Can be implied by $\mathrm{IQR}=1.1$ CAO
Notes	1 If values are not ordered, then $\mathrm{M}=5.2, \mathrm{UQ}=3.3$ and $\mathrm{LQ}=4.5$ so $\mathrm{IQR}=(-) 1.2 \Rightarrow \mathrm{M} 0$ 2 If answers are not identified, then assume that order of values is median, IQR			
	Range $=5.2-3.3=\underline{\mathbf{1 . 9}}$	B1	1	CAO
Note	1 If values are not ordered, then Range $=0.2 \Rightarrow \mathrm{~B} 0$			
(c)	All values are different/each value occurs once/ there is no mode	B1	1	OE
		Total	6	

Q	Solution	Marks	Total	Comments
2	No MR or MC in this question			Accept \%age equivalents in (a)(i) to (iii)
(a) (i)	Time, $X \sim \mathrm{~N}\left(7.5,1.6^{2}\right)$ $\begin{aligned} \mathrm{P}(X<10)=\mathrm{P}(Z & \left(\frac{10-7.5}{1.6}\right) \\ & =\mathrm{P}(Z<1.5625)=\underline{\mathbf{0 . 9 4}} \end{aligned}$	M1 A1	(2)	Standardising 10 with 7.5 and 1.6 but allow (7.5-10); $z^{2} \Rightarrow$ M0 AWRT (0.94091)
(ii)		M1 A1	(2)	Correct area change; 0.9375 or correct standardising are not required Can be implied by final answer >0.5 AWFW (0.82575)
(iii)	$\begin{aligned} & \mathrm{P}(5<X<10)= \\ & \mathrm{P}(\mathrm{Z}<1.5625)-\mathrm{P}(\mathrm{Z}<-1.5625)= \\ & (\mathrm{i})-[1-\text { (i) }] \\ & \text { or } 1-2 \times[1-\text { (i) }] \\ & \\ & =[2 \times(\mathrm{i})]-1 \\ & =2 \times 0.94091-1==\underline{\mathbf{0 . 8 8}} \end{aligned}$	M1 A1	(2)	OE; any correct difference in areas using (a)(i) or $\mathrm{P}(5<X<10)$ Can be implied by a correct final answer AWRT (0.88182)
			6	
(b)	$\begin{array}{r} 80 \%(0.8) \Rightarrow Z=\underline{\mathbf{0 . 8 4}} \\ \mathrm{P}(Y<15)=\mathrm{P}\left(Z<\frac{15-\mu}{2.4 \text { or } 1.6}\right) \\ \left(\frac{15-\mu}{2.4}\right)=0.84(16) \text { or } 1.28(16) \\ \mu=\underline{\mathbf{1 2 . 9 5} \text { to 13 }} \end{array}$	B1 M1 m1 A1	4	AWRT; ignore sign (0.8416) Standardising 15 with μ and (2.4 or 1.6) but allow ($\mu-15$) Equating expression with $\sigma=2.4$ to either \mathbf{z}-value (ignore sign) Can be implied by a correct answer AWFW (12.9802) Must be consistent signs throughout
		Total	10	

Q	Solution	Marks	Total	Comments
3	No MR or MC in this question			
(a)	$\begin{aligned} b(\text { gradient/slope) } & =\underline{\mathbf{0 . 8 5}} \\ b \text { (gradient/slope) } & =\underline{\mathbf{0 . 8} \text { to } 0.9} \\ a \text { (intercept) } & =\underline{\mathbf{9 4 . 6} \text { to } 94.8} \\ a \text { (intercept) } & =\underline{\mathbf{9 3} \text { to } 97} \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \\ \\ \text { B2 } \\ \text { (B1) } \end{gathered}$		AWRT (0.85055) AWFW AWFW (94.69602) AWFW
	Attempt at $\sum x \sum x^{2} \quad \sum y \& \sum x y$ or Attempt at $S_{x x} \& S_{x y}$ Attempt at correct formula for b $b=\underline{0.85}(\mathrm{AWRT}) \quad a=\underline{94.6} \text { to } 94.8(\mathrm{AWFW})$	(M1) (m1) (A1 A1)	4	254 6924 1163 $\&$ 29942 (all 4 attempted) $\quad\left(\sum y^{2}=135693\right)$ 472.4 \& 401.8 (both attempted) $\quad\left(S_{y y}=436.1\right)$ $(\bar{x}=25.4 \& \bar{y}=$ 116.3)
Notes	1 Treat rounding of correct answers as ISW 2 Written form of equation is not required 3 Award 4 marks for $y=(94.6$ to 94.8$)+0.85$ or for (94.6 to 94.8) $+0.85 x$ 4 Values of a and b interchanged and equation $y=a x+b$ stated in (b) \Rightarrow max of 4 marks 5 Values of a and b interchanged and equation $y=a+b x$ stated in (b) $\Rightarrow 0$ marks 6 Values are not identified or simply $b / a=\#$ and $a / b=\#$, then 0.8 to $0.9 \Rightarrow$ B1 and 93 to $97 \Rightarrow$ B1 but accept, for example, as identification, $[b=\#, a=\#$ with $y=a+b x$ but no substitution for $b \& a]$ or [slope/gradient $(b)=$ \#, intercept $(a)=$ \#] 7 Answers in fractions can score at most M1 m1 8 Some/all of marks can be scored in (b) \& (d), even if some/all of marks are lost in (a), but marks lost in (a) cannot be recouped by subsequent working in (b) or (d)			
(b)	$\begin{aligned} & y_{30}=\underline{120} \text { to } 120.5 \\ & y_{30}=\underline{117 \text { to } 123} \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$	2	AWFW (120.21253) AWFW
Note	1 If, and only if, B0, then award M1 for seen use of $y=a+b \times 30$			
(c)(i) (ii)	Extrapolation BMI is outside/above range 45 is outside/above range of BMI or x Extrapolation Age is outside/above range 50 is outside/above range of age	B1 B1	2	OE; accept references to sample/data but not to population OE; accept references to sample/data but not to population
Notes				
(d)	$\begin{aligned} & r_{20}=117-(a+b \times 20)=\underline{\mathbf{5 . 3}} \\ &=\underline{\mathbf{5} \text { to } \mathbf{6}} \end{aligned}$	$\begin{gathered} \text { B2 } \\ \text { (B1) } \end{gathered}$	2	AWRT; do not ignore sign (5.29297) AWFW; ignore sign
Note	1 If, and only if, B0, then award M1 for seen use of \pm [117-($a+b \times 20)$]			
(e)	As 2.71/(mean) value is small (in comparison to y-values), estimate is likely to be (quite/fairly/very/extremely) accurate	B1	1	OE; justification \& conclusion
			11	

Q	Solution	Marks	Total	Comments
4	No MR or MC in this question			
Notes	1 Percentage answers must be penalised by $\mathbf{1}$ accuracy mark at first correct answer only if no indication of percentage shown $\mathbf{2}$ Ratio answers (eg 4:5) are only acceptable in (a) and must be penalised by $\mathbf{1}$ accuracy mark at first correct answer			
(a)(i)	$\begin{aligned} & \mathrm{P}(\geq 1)=0.70+0.55-0.45= \\ & \quad \underline{\mathbf{0 . 8} \text { or } \mathbf{4} / \mathbf{5} \text { or } \mathbf{8 0 \%}} \mathbf{l} \end{aligned}$	M1 A1	(2)	$\begin{aligned} & \text { OE; eg } 0.25+0.45+0.1 \\ & \text { CAO } \end{aligned}$
(ii)	$\mathrm{P}(=1)=(\mathrm{i})-0.45=0.25+0.1$ 0.35 or $35 / 100$ or $7 / 20$ or 35%	AF1	(1)	F on (i) $0<p<1$
			3	
Note	1 If answers to (i) \& (ii) are correct but reversed, then award M1 A0 AF0			
(b)	$\begin{aligned} P(A) \times P(M)= & \underline{0.70 \times 0.55 \text { or } 0.385} \\ & \underline{0.385} \neq \mathbf{0 . 4 5} \text { or }<\mathbf{0 . 4 5} \end{aligned}$	B1 B1	2	OE Must compare to 0.45 OE and compare 'like with like’
Notes	$\begin{array}{\|l} \mathbf{1} \mathrm{P}(M \mid A)=\underline{\mathbf{0 . 4 5 / 0 . 7 0}} \neq \mathrm{P}\left(M \mid A^{\prime}\right)=\mathbf{0 . 1 0 / \mathbf { 0 . 3 0 }} \neq \mathrm{P}(M)=\mathbf{0 . 5 5} \Rightarrow \mathrm{B} 1 \text { for any } 2(\mathrm{OE}) \text { values, } \mathrm{B} 1 \text { for comparison } \\ \mathbf{2} \mathrm{P}(A \mid M)=\underline{\mathbf{0 . 4 5 / 0 . 5 5}} \neq \mathrm{P}\left(A \mid M^{\prime}\right)=\mathbf{\underline { 0 . 2 5 / 0 . 4 5 }} \neq \mathrm{P}(A)=\mathbf{\underline { 0 . 7 0 }} \Rightarrow \mathrm{B} 1 \text { for any } 2(\mathrm{OE}) \text { values, } \mathrm{B} 1 \text { for comparison } \end{array}$			
(c)(i)	$\begin{aligned} \mathrm{P}(\mathrm{AMBN})= & (0.45 \text { or } 0.385 \text { or } 0.70 \times 0.55) \\ & \times 0.85 \times 0.65 \\ = & \underline{\mathbf{0 . 2 4 8} \text { to } \mathbf{0 . 2 5} \text { or } \mathbf{2 4 . 8 \%} \text { to } \mathbf{2 5 \%}} \end{aligned}$	M1 A1	2	Can be implied by a correct answer Ignore any integer multipliers (eg 4) AWFW (0.248625)
Notes	1 Use of 0.385 gives an answer of 0.2127125 (0.212 to 0.213 AWFW) \Rightarrow M1 A0 2 The $\mathbf{3}$ correct terms identified but not multiplied (eg added) \Rightarrow M0 A0			
(ii)	$\begin{array}{r} \mathrm{P}\left(A^{\prime} M^{\prime} B^{\prime} N^{\prime}\right) \\ =\mathrm{P}\left(A^{\prime} M^{\prime}\right) \times \mathrm{P}\left(B^{\prime} N^{\prime}\right)=p \times \mathrm{P}\left(B^{\prime} N^{\prime}\right) \\ p=\underline{\mathbf{0 . 2}} \\ p \times(0.15 \times 0.35) \\ =\underline{\mathbf{0 . 0 1} \text { to } \mathbf{0 . 0 1 1} \text { or } \mathbf{1 \%} \text { to } \mathbf{1 . 1 \%}} \end{array}$	B1 M1 A1	3	CAO; can be implied from working or from a correct answer $0<p<1$ Can be implied by a correct answer Ignore any integer multipliers (eg 4) AWFW (0.0105)
Notes	1 Use of $p=0.3 \times 0.45=0.135$ gives answer of $0.0070875(0.007$ AWRT) \Rightarrow B0 M1 A0 2 The $\mathbf{3}$ correct terms identified but not multiplied (eg added) \Rightarrow B1 M0 A0			
		Total	10	

Q	Solution	Marks	Total	Comments
$\begin{gathered} 7 \\ \text { (a) } \end{gathered}$		M1 A1 B2		May be near printed table If seen, then ≥ 5 correct If not seen, then can be implied from mean of 62.9 or 67.5 or from 10065 AWRT (62.90625) AWFW (12.3234 or 12.3621)
Notes	$1 \sum f x=10065$ and $\sum f x^{2}=657450$ 2 Using $L C B$-values or $U C B$-values and f-values gives Mean $=65.0$ or 70.0 and $\mathrm{SD}=12.3$ to $12.4 \Rightarrow$ M0 A0 B2 3 Using only x-values gives Mean $=67.5$ and SD $=18.7$ to $19.5 \Rightarrow$ M1 A0 B0 4 Using only f-values gives Mean $=12.3$ and $\mathrm{SD}=8.6$ to $9.0 \Rightarrow$ M0 A0 B0 5 If, and only if, M0 A0 B0, then award M1 for seen attempt at $\sum f(L C B$ to $U C B) \div 160$			
(b)(i)		B1 M1 AF1 A1 Adep1	5	AWFW Used; must $\div \sqrt{n}$ with $n>1$ Evaluation of only one CL \Rightarrow M0 F on (a) AWRT/AWFW Dependent on previous A1 AWFW
Notes	1 Use of t-value of (2.34 to 2.35) gives $\pm 2.3 \Rightarrow$ B1 M1 AF1 A1 A1 2 A correct answer with no working (ignore (a)) \Rightarrow B1 M1 AF1 A1 A1			
(ii)	Clear correct comparison of 61.7 with CI eg 61.7 is within CI or $\mathrm{LCL}<61.7$ Disagree with claim or reason to doubt claim	BF1 Bdep1	2	F on CI providing it contains 61.7 Must be an interval but quoting values for limits is not required OE; dependent on BF1
Notes	1 Statement must clearly indicate that " 61.7 is within the CI" OE 2 "It/mean/value/etc" is within CI $\Rightarrow \mathrm{BF} 0$ Statements of the form " 61.7 is within 98% of the data" \Rightarrow BF0 4 Statements such as "Claim unlikely/unreasonable/unsupported/incorrect/false/impossible/invalid" \Rightarrow Bdep1 providing BF1			
		Total	11	

[^0]: Copyright © 2014 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

